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ABSTRACT 

This research addresses the problem of acquiring a time series of magnetic reso- 

nance images with both high spatial and temporal resolutions. Specifically, we sys- 

tematically investigate the advantages and limitations of reduced-encoding imaging 

using a priori constraints. This study reveals that if the available a priori information 

is a reference image, direct use of this information to "optimize" data acquisition using 

the existing wavelet transform or singular value decomposition schemes can under- 

mine the capability to detect new image features. However, proper incorporation of 

the a priori information in the image reconstruction step can significantly reduce the 

resolution loss associated with reduced-encoding. For Fourier-encoded data, we have 

shown that the generalized-series (GS) model is an effective mathematical framework 

for carrying out the constrained reconstruction step. 

Several techniques are proposed in this dissertation to improve the basis functions 

of the GS model by introducing dynamic information. The two-reference reduced- 

encoding imaging by generalized-series reconstruction (TRIGR) method suppresses 

background information through the use of a second high-resolution reference image. 

A second technique injects information from the dynamic data into the GS basis 

functions, as opposed to deriving them solely from the reference information. These 

techniques allow the GS basis functions to more accurately represent the areas of 

dynamic change. Finally, motion that occurs between the acquisition of the reference 

and dynamic data sets can render the reference information useless as a constraint 

for image reconstruction. A motion compensation method is proposed which uses a 

similarity norm to accurately detect the motion in spite of contrast changes and the 

low-resolution nature of the dynamic data. 
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CHAPTER  1 

INTRODUCTION 

1.1    Problem Statement 

This research is about dynamic magnetic resonance imaging (MRI). Although 

dynamic imaging may mean different things in different applications, from the data 

acquisition standpoint, it can always be characterized as the collection of a sequence 

of images I\(r), I2{r) ... /„(r). Sometimes, this type of experiment is termed time- 

sequential imaging. The interimage variations AI = In — In-i are commonly called 

dynamic changes. For this study, we assume that the dynamic changes may or may not 

be time-dependent per se. For example, in diffusion-weighted imaging, the dynamic 

changes do not reflect an underlying time variation in the object, but are due to 

manipulation of the data acquisition procedure as the image sequence progresses. On 

the other hand, the dynamic changes can relate to a time-dependent change in the 

object being imaged, such as that which occurs when using MRI to guide the insertion 

of a biopsy needle. 

Dynamic MRI is becoming an increasingly important area of research due to the 

many practical applications. A particular example of interest is MR mammography in 

which a time-series of images of the breast is taken to monitor the wash-in/wash-out 

of an injected contrast agent. The interest in this lies in the possibility that the tem- 

poral shape of the enhancement curve, as well as the spatial pattern of enhancement 

in a lesion, can determine noninvasively whether a lesion is benign or malignant [1-9]. 

To capitalize on the period of greatest differentiation between malignant and benign 

lesions, a sequence of images must be acquired during the first 1 or 2 minutes follow- 

ing contrast injection [10,11], leading to the requirement of high temporal resolution. 



In addition, high spatial resolution in three dimensions is imperative to allow the vi- 

sualization of very small tumors with full coverage of the breast. A dynamic imaging 

method that could deliver simultaneously high temporal and spatial resolutions could 

detect cancerous lesions at an earlier stage, thus improving the patient's prognosis. 

Additionally, a method of noninvasive lesion characterization could reduce the physi- 

cal and mental toll on the patient, as well as the financial cost. The ability to acquire 

rapid, high-quality images would also have application in contrast-enhanced imaging 

of other types of cancers for detection [12,13], monitoring the effects of treatment [14] 

and watching for recurrence [12]. 

The focus of this research is obtaining high spatial and temporal resolutions simul- 

taneously. Specifically, we investigate how to obtain high-resolution image sequences 

with a reduced number of dynamic data. Practical issues related to motion, signal- 

to-noise ratio and resolution capability are also addressed in this dissertation. 

1.2    Background 

1.2.1    Signal expression 

The signal activated from a sample (or a spin system) after a pulse excitation can 

be written in the following form [15]: 

/oo . 
W(r)M(r)e-l^rltdf, (1.1) 

-00 

where d(t) is the activated signal, W(r) is a window function that represents the 

excitation sensitivity, M(r) is the spatial distribution of spins in the object, 7 is a 

proportionality constant and u(f) is the frequency of the activated signal. Typically, 

W(f) defines a planar slice of the object [16], but more sophisticated spatially selective 

excitation schemes are possible such as those used in non-Fourier encoding methods. 

Note that the received signal in Eq. (1.1) is the integral over the entire excited region 

of the object. 



1.2.2    The issue of imaging time 

In order to create an image from the activated signal, it is necessary to encode 

spatial information into the signal [17]. Frequency-encoding makes the frequency of 

the acquired signal depend on the location of the spins as 

Aw(r/e) = 7G/er/e, (1.2) 

where Aco (rje) is the change in frequency as a function of position along the frequency- 

encoding direction and G/e is the applied frequency-encoding gradient. The phase- 

encoding method encodes the spatial information into the initial phase of the received 

signal as 

<f>{rpe) = -^GperpeTpe) (1.3) 

where (f)(rpe) is the phase as a function of position along the phase-encoding direction, 

Gpe is the applied phase-encoding gradient and Tpe is the phase-encoding time period. 

The encoding process can be described using the popular &-space notation [18] in 
—* 

which the fc-space variable k is defined as 

k(t) = f^G{t)dt, (1.4) 

—# 
where G is the applied gradient magnetic field. Using this notation, the imaging 

equation is given by the Fourier transform as 

_ TOO 

d(k) = /     W(r)I(r)e-i27rrkdr, (1.5) 
J—00 

where d(k) is the acquired signal and 1(f) is the desired image function. 

To create a good quality image, measurements must be made from many locations 

in ft-space. In the conventional Fourier imaging technique, a combination of the 

phase and frequency-encoding methods discussed above is used. During each data 

acquisition period, a set of data points is acquired using frequency encoding as 

M") = ^GfenAt ^ < n < ^, (1.6) 
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(a) (b) (c) (d) (e) 

Figure 1.1: Coverage of fc-Space: (a) standard Fourier encoding, (b) pro- 
jection reconstruction, (c) echo planar and fast spin-echo, (d) spiral scan- 
ning and (e) concentric scanning. 

where Nje is the number of points acquired in the frequency-encoding direction and 

At is the time increment between samples. For the phase-encoding direction, the value 

of the phase-encoding gradient is incremented between each of the Ne encodings as 

Z7T 

-N,. Ne <n<T, (1.7) 

where AGpe is the step in phase-encoding gradient. The resulting coverage of ft-space 

is shown in Fig. 1.1(a). Another example is projection reconstruction imaging, which 

uses frequency encoding for two dimensions. In this case, &-space is covered in a radial 

fashion as shown in Fig. 1.1(b) by incrementing two frequency-encoding gradients as 

7 

kfei(n) 

2TT 

2TT 

G cos(nA(j))t 

G sin(nA(j))t 

and 

-Ne Ne —— < n < —, 
2    ~     ~   2 

(1.8a) 

(1.8b) 

where G is a constant and A</> is the angular increment in &-space. 

No matter what coverage of &-space is selected, the time to acquire an image 

depends upon the number of encodings that are required. If TR is the repetition time 

or the time for one encoding and iVe excitations are necessary, the total imaging time 

will be 

T = NeTR. (1.9) 

In many cases, the minimum value of TR is limited by the T\ tissue relaxation param- 

eter in which case, an increase in temporal resolution would have to come through a 

reduction in the number of acquired encodings. 



1.2.3 The issue of image resolution 

Describing the MR imaging process in terms of linear system theory, the resulting 

image 1(f) will be related to the original object 1(f) through a convolution as 

1(f) = 1(f) *h(f), (1.10) 

where h(f) is the point spread function (PSF) of the imaging process. The width of 

the PSF defines the separation required between two points in the object such that 

they can be resolved in the image and thus, gives a measure of the spatial resolution 

of the image. The width of the PSF is often described in terms of the width w of an 

equivalent rectangle as 

r /i(0)rect (-) dr = f°° h(r)dr, (1.11) 

where 

rect(r) = ' '     2 (1.12) 
10   else. 

For example, if the standard Fourier imaging method is used, the PSF will be 

h(r) = AkS^N:MrX-^, (1.13) 
sm(7rA«;r) 

where iVe is the number of &-space data points and Ak is the step size in ft-space. 

Therefore, the spatial resolution of the resulting image is 

Ar=—!—, (1.14) 
NeAk' v      ' 

where Ar is the pixel size in the image. By comparing Eqs. (1.9) and (1.14), it can 

be seen that an improvement in the temporal resolution through a reduced number 

of phase encodings will be accompanied by a commensurate loss in spatial resolution 

for the conventional Fourier imaging technique. 

1.2.4 Fast imaging 

For many dynamic imaging applications, fast imaging techniques are necessary to 

provide adequate temporal resolution. It is clear from Eq. (1.9) that one can increase 



the temporal resolution of a sequence of images by either shortening TR or reducing 

Ne. Techniques that use the former strategy are called fast-scan techniques and the 

latter are called reduced-scan techniques. 

Fast-scan imaging techniques try to acquire a full set of data in a time that is short 

compared to the dynamic process. The fc-space coverage of several of these techniques 

is illustrated in Fig. l.l(c)-(e). Echo planar [19,20] uses a rapidly switching frequency 

encoding gradient to cover fc-space in a rectilinear fashion during data acquisition. The 

fast spin-echo technique [21-23] obtains the same fc-space coverage as echo planar, but 

uses multiple refocussing pulses instead of the gradient switching. Because the data 

for these methods are acquired on a rectilinear grid, image reconstruction can be easily 

performed using the fast Fourier transform (FFT). Spiral scanning [24-26] applies 

time-varying frequency encoding gradients during data acquisition to traverse a spiral 

trajectory in &-space. Image reconstruction for spiral scanning requires interpolation 

to a Cartesian grid followed by the FFT [27,28]. With this reconstruction method, 

it is necessary to know the exact &-space location of the data points to avoid image 

artifacts, often necessitating the measurement of the actual fc-space trajectory due 

to imperfect gradient performance [29,30]. Concentric scanning [31,32] also uses 

a modulated frequency encoding gradient, but acquires circles of data in A;-space 

instead of a spiral of data. For all of these techniques, an image can be generated 

with a single excitation or interleaved segments of the required data can be acquired 

with a few excitations. Although fast-scan techniques are capable of acquiring an 

image in a short time, they may require specialized hardware for implementation. 

In addition, they may have reduced contrast between tissues and a reduced signal- 

to-noise ratio (SNR). For dynamic imaging applications, there may also be power 

deposition problems due to the multiple images that are acquired. 

In contrast to the fast-scan methods, the reduced-scan methods try to improve 

the temporal resolution by reducing Ne. These techniques are motivated by the 

observation that in many dynamic imaging applications, the dynamic process induces 

a contrast modulation on the underlying static high-resolution morphology. They 

exploit this fact to reduce the redundancy in the data acquisition process to improve 
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Figure 1.2: Reduced-Encoding Data Acquisition: A high-resolution refer- 
ence data set is followed by a series of reduced-encoding data sets during 
the dynamic imaging period. 

the temporal resolution. The reduced-scan data acquisition strategy is illustrated 

in Fig. 1.2. A high-resolution reference data set is acquired, followed by a sequence 

of reduced-encoding dynamic data sets. If M and N encodings are acquired for the 

reference and dynamic data sets, respectively, the improvement in temporal resolution 

for the dynamic images will be M/N. However, as discussed before, this will result in 

a loss of spatial resolution with the conventional Fourier reconstruction method. To 

avoid this loss of spatial resolution, many of the reduced-encoding dynamic imaging 

methods use a priori information from the reference image at some point in the 

imaging process to reduce the number of encodings required per dynamic image. 

Several of the reduced-scan techniques, such as wavelet encoding methods [33-57] 

and singular value decomposition methods [58-70], use the a priori information during 

the data acquisition process to determine a more optimal truncated basis set than 

the infinite complex exponentials of the Fourier encoding set. The hope is that the 

non-Fourier basis vectors will be better able to encode the information in the object 

with a small number of basis functions. Other reduced-scan techniques use the a 

priori information as a constraint for extrapolation of the missing dynamic data 

during image reconstruction [71]. These include the reduced-encoding imaging by 

generalized-series reconstruction (RIGR) method [72, 73] and the keyhole or data- 

replacement technique (DRT) [74,75]. The reduced-scan methods will be discussed 

in more detail in Chapter 2. 



1.3    Summary of Results 

The key issue addressed in this research is how to obtain simultaneously high spa- 

tial and temporal resolutions within the reduced-encoding dynamic imaging frame- 

work. To avoid the loss of spatial resolution that occurs with reduced-encoding Fourier 

imaging, many methods make use of a priori information to reduce the number of 

encodings that are necessary for the dynamic images. In this dissertation, it was 

determined that if the a priori information that is available is a reference image, di- 

rect use of this information to "optimize" data acquisition using the existing wavelet 

transform or singular value decomposition schemes can undermine the capability to 

detect new image features. Incorporation of the a priori information in the image 

reconstruction step is preferable. We have also shown that the generalized series (GS) 

model of the RIGR technique is a better way to combine the reference and dynamic 

data for image reconstruction than the keyhole method. 

Several techniques are proposed in this dissertation to improve the GS basis func- 

tions by introducing dynamic information. The two-reference reduced-encoding imag- 

ing by generalized-series reconstruction (TRIGR) method suppresses background in- 

formation through the use of a second high-resolution reference image. This allows 

the GS basis functions to more accurately represent the areas of dynamic change. 

A second technique injects information from the dynamic data into the GS basis 

functions as opposed to deriving them solely from the reference information. The 

resulting GS basis functions more closely resemble those that would be derived from 

the dynamic image itself. Finally, motion that occurs between the acquisition of the 

reference data set and the dynamic data sets can render the reference information 

useless as a constraint for image reconstruction. This is a difficult problem to address, 

because the dynamic changes may alter the appearance of the image significantly, pos- 

ing problems for both navigator-based techniques and registration algorithms. The 

proposed method uses a similarity norm to accurately detect the motion, in spite of 

the contrast changes, and can significantly reduce motion artifacts in GS images. 



1.4    Organization of the Dissertation 

The remainder of the dissertation is organized as follows. Chapters 2 and 3 investi- 

gate issues involved in data acquisition and image reconstruction for reduced-encoding 

dynamic imaging. Chapter 4 formulates a method to use the additional information 

in a second high-resolution reference image to suppress the background information in 

the GS basis functions. Chapter 5 details a method to use the edge information from 

the reference image with the contrast information from the dynamic data to improve 

the resulting dynamic images. Chapter 6 introduces a motion detection scheme for 

reduced-encoding dynamic imaging applications. Chapter 7 contains suggestions for 

future work and the conclusions drawn from this research. 



CHAPTER  2 

DATA ACQUISITION 

For convenience, we shall denote the MRI data in terms of an inner product as 

d(n) = (J,e(n)> nEÄf, (2.1) 

where d(n) is the acquired data, / is the object function and e(n) are the encoding 

vectors. For reduced-encoding dynamic imaging, the key issue is the selection of a 

truncated set of basis functions e(n), n e A/dyn C M, to best represent the dynamic 

image I. With the typical Fourier reduced-encoding scheme, a priori information is 

not used to select the truncated set of encoding vectors. If it is desired to inject a 

priori information into the data acquisition, two current methods for doing that are 

the wavelet and singular value decomposition (SVD) encoding methods. The wavelet 

encoding scheme uses the a priori information only to guide the truncation; whereas, 

the SVD method uses the information to both select and truncate the encoding vector 

set. For this research, the wavelet and SVD encoding methods were investigated in 

comparison to Fourier encoding for reduced-encoding dynamic imaging applications. 

2.1    Fourier Encoding 

With the Fourier encoding method, the encoding vectors are the Fourier basis 

set of infinite complex exponentials et27rkr, where k is a spatial frequency variable. 

Although it would be possible to adaptively truncate the Fourier encoding vectors that 

are acquired for an object, typically no a priori information is used in the Fourier- 

encoding data acquisition process. Given that no a priori information is available 

about the object, it is optimal to sample data from the center of &-space because of 

10 



the well-known fact that fc-space data decays as l/k for practical image functions. 

This scheme can also be motivated by the observation that the central &-space data 

contributes the bulk of the contrast information to the resulting image; whereas, data 

in the outer region of k-space largely represents the edge information. Therefore, with 

Fourier encoding, the reduced-encoding data set that is collected is described by 

I(r)e-i2™Akrdr -£- < n < j- - 1. (2.2) 

2.2    Wavelet Encoding 

In contrast to the infinite complex exponentials of the Fourier basis set, the wavelet 

basis functions are localized in both the frequency and spatial domains. The basis set 

is formed from dilations and translations of a scaling function <f>, which extracts an 

approximation of the object function, and the associated wavelet ip, which extracts 

the details of the object function. To form a wavelet basis set, the (J> must be con- 

tinuously differentiate and must satisfy \<j>(r)\ = ö(r~2) and \4>'(r)\ = ö(r~2) [76]. 

Alternatively, the wavelet function must satisfy the admissibility condition [77] 

f T{(p}{k) Ik]'1 dk <  oo. (2.3) 

The commonly used wavelets can be classified into two general categories: orthogonal 

and biorthogonal. An orthogonal wavelet transform requires two basis sets. For a 

J-level discrete dyadic orthogonal wavelet transform, the set of these functions can 

be expressed as 

<f>-j,k(r)   =   Vz-1 <f> (2~Jr - k)        k = 1,2..., M2~J and        (2.4a) 

<pu{r)   =   y/Vip{2?r-l)        j = -1, -2..., -J;l = 1,2... ,M2j,    (2.4b) 

where <j> and tp are the scaling function and wavelet, respectively, and M is the 

number of points across the object function. The other category is biorthogonal 

wavelets, which have the advantage of linear phase. (It has been shown that tradi- 

tional wavelets can only be orthogonal and linear phase simultaneously for the Haar 

11 



wavelet basis [77].) For biorthogonal wavelets, four basis sets are required because 

the analysis and synthesis scaling functions (wavelets) cannot be the same function as 

in the orthogonal case. For a ./-level discrete dyadic biorthogonal wavelet transform, 

the set of these functions can be expressed as- 

4>-JM = v/F7 <j> (2~Jr - k)        k = l,2...,M2~J, (2.5a) 

<PiAr) = Vtt<p(2jr-l)        j = -l,-2...,-J;l = l,2...,M2j, (2.5b) 

$-jtk(r) = v7^7 4> (2~Jr - k)        k = l,2...,M2~J and (2.5c) 

<Pi,i(r) = VV<p(2jr-i) j =-1,-2...,-J;l = 1,2...,M2j, (2.5d) 

where <j> and <p of Eq. (2.4) are the analysis scaling function and wavelet, respectively, 

and <j> and ip are the synthesis scaling function and wavelet, respectively. Note that 

the basis functions are down-sampled by a factor of two at each level due to the 

dilation, and hence, the transform will not have redundant information. Therefore, a 

signal of M samples can be represented by a J-level discrete wavelet transform of M 

total coefficients {Wir3 scaling coefficients and MZjd-i 2J wavelet coefficients). 

By wavelet theory, the wavelet coefficients that are the largest are the most im- 

portant, and these tend to be sparse, meaning that most object functions can be well 

represented with a truncated set of wavelet coefficients. To try to exploit this prop- 

erty for dynamic MRI applications, wavelet encoding is applied in the following way. 

First, a high-resolution reference image is collected, typically with Fourier encoding. 

This reference image is decomposed along the proposed wavelet encoding direction 

using the ID wavelet transform. Based on a chosen criteria, the "most important" N 

wavelet basis functions are selected to be used as excitation profiles for the dynamic 

imaging period. This reduced set of encodings that is acquired can be expressed as, 

for a J-level wavelet transform, 

A2-j{Idyn}   =   (hyn{r),2-3^{2-Jr-k))    k = kuk2.. .kN^ and       (2.6a) 

DvUdyn]   =   (/dyn(r),2V(2J'r-/))    j = -l,-2...-J;l = lul2...lNvj, (2.6b) 
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where A^ scaling functions and N^j; j = -1,-2...,-J wavelets are utilized and 

To perform wavelet encoding of an object, one must explicitly form the inner 

product of the object and the basis functions using spatially selective RF pulses to 

generate an excitation profile in the shape of the selected basis functions. In other 

words, the acquired signal is received from a scaling function or wavelet-shaped region 

of the object. The excitation profile is translated and dilated to acquire the set of 

data specified in Eq. (2.6). Translation of the excitation profile is accomplished by 

either shifting the center frequency of the RF pulse [40] or ramping the phase during 

the RF pulse [54]. Dilation of the excitation profile can be achieved by changing the 

gradient strength [40] or changing the length of the RF pulse [53]. 

2.3    Singular Value Decomposition Encoding 

Another non-Fourier encoding method is based on the singular value decomposi- 

tion (SVD). The SVD of a j x k matrix A of rank r is defined as 

A = UEVH, (2.7) 

where U and V are j x j and k x k unitary matrices, respectively, and E is a j x k 

diagonal matrix. The columns of U and V are called the left and right singular 

vectors, respectively, and the r diagonal entries of E are called the singular values. 

The SVD can also be written as 

A = 2>*tf, (2.8) 

where vii and U{ are the columns of U and V, respectively, and <7j are the diagonal 

entries of E. 

With the SVD, it is easy to choose the optimal truncated encoding vector set 

using the Eckart and Young theorem [78]. This theorem states that the minimum 

distance in the Li norm sense between a matrix A of rank r and any matrix B of 
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rank less than or equal to f < r is achieved by the truncated SVD1, which is defined 

as 

A   =   j^aÜiV? (2.9a) 
i=i   ■ 

=   UfUfVf. (2.9b) 

Here T,f is a diagonal matrix containing the r-most significant singular values, and Uf 

and Vf are the matrices consisting of the left and right singular vectors, respectively, 

that are associated with the f-most significant singular values. 

This feature of the SVD has been exploited in many fields and is the basis for its 

application to dynamic MR imaging. The truncated SVD representation of a reference 

image is used to define the encoding vectors for the dynamic data acquisition, in the 

hopes that these vectors would also form a good representation for the dynamic 

image. Specifically, given a reference image Jref, the singular value decomposition of 

the reference image is first performed as 

Ire[ = UZVH. (2.10) 

For SVD encoding along the vertical or horizontal directions, the Ui or v,, respectively, 

corresponding to the largest N singular values are selected as the encoding vectors 

for the dynamic imaging period. In the pure vertical encoding case, for example, the 

dynamic data set generated for each dynamic image is the projection of the ideal 

image Idyn onto the space spanned by the selected left singular vectors. This can be 

expressed mathematically as 

-Sdyn = UN Idyn, (2-H) 

where UN is the matrix constructed from the N selected left singular vectors. As 

with wavelet encoding, SVD encoding requires that the inner product is explicitly 

created using spatially selective RF pulses to excite a region of the object in the 

shape of a selected SVD singular vector. Unlike wavelet encoding, which can use many 

translations and dilations of a given excitation profile depending upon the selected 

wavelet basis functions, each SVD encoding will involve a different excitation profile. 
JNote that the minimizer of \\A — B\\2 is unique if and only if a? > <Tf+i- 
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Figure 2.1: Daubechies D18 Orthogonal Wavelet: (a) scaling function and 
(b) wavelet 

2.4    Encoding Method Assessment 

The methods were compared using computer simulations on both simulated and 

real MRI data of dynamic imaging applications. To simulate the reduced phase- 

encoding data acquisition, &-space data sets were generated from a sequence of high- 

resolution images. A baseline high-resolution data set was used as the reference data, 

and the central TV phase encodings from the remaining data sets were used as the 

dynamic phase encodings. To simulate wavelet encoding, the reference image was de- 

composed using the ID wavelet transform. The N "most important" reference wavelet 

encodings were selected based on the squared sum along the frequency-encoding di- 

rection for each wavelet. The dynamic data associated with the selected wavelet 

encodings were generated using Eq. (2.6). To simulate the SVD encoding method, 

the singular value decomposition of the reference image was calculated, and the left 

singular vectors associated with the N largest singular values were selected as the 

dynamic encodings. The dynamic data were then generated using Eq. (2.11). 

Note that with the wavelet encoding method, the choice of wavelet basis set will 

affect the results due to implementation issues, as well as the ability to represent the 

dynamic image with a truncated basis set. In selecting a particular wavelet basis set 

for experimental MR encoding, a smoother wavelet is preferred, because it requires 
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Figure 2.2: Cohen 7/9 Biorthogonal Wavelet: (a) analysis scaling func- 
tion, (b) analysis wavelet, (c) synthesis scaling function and (d) synthesis 
wavelet 

a shorter RF pulse [40] and reduces the bandwidth requirement of the RF pulse [52]. 

In addition, a more accurate wavelet-shaped profile can be excited, which will result 

in better images [40]. However, there is a trade-off between the length of the required 

RF pulse and the spatial support of the wavelet. This research utilized the orthogonal 

Daubechies D18 wavelet basis set [77] and the biorthogonal Cohen 7/9 wavelet basis 

set [79], pictured in Figs. 2.1 and 2.2, respectively, which are considered by many 

to be among the best for image compression [80]. This dissertation focused on the 

theoretical power of the basis set for encoding dynamic images and chose to ignore 

the long RF pulse that would be required to excite the profiles associated with these 

wavelets. 

In addition, the non-Fourier encoding methods described here use the reference 

data set to choose the encoding vectors for the entire dynamic imaging period.  A 
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modification of this technique is to use a reconstructed dynamic image to select the 

encodings for the subsequent dynamic image. Although this should help to increase 

the similarity between the image used to truncate the encoding vector set and the 

image acquired with the selected dynamic encodings, it would reduce the achiev- 

able temporal resolution due to the computation and magnet setup required between 

successive dynamic data sets. 

It is important to note that the simulations in this study did not take into ac- 

count several factors that would degrade the performance of the non-Fourier encoding 

methods. First, it was assumed that the spatially selective RF encodings could be 

exactly excited. This is difficult in practice, and imperfect excitation will degrade the 

resulting image [40,67]. In addition, T\ variations across the image will further distort 

the encoded profile when a short TR is used, which is especially a problem when a 

Ti contrast agent is injected. The use of RF encoding with the non-Fourier methods 

also limits the application to single slice or 3D spin echo imaging, and it is not easy 

to implement 2D or thin slab 3D gradient echo sequences [61]. Another point is the 

signal-to-noise ratio (SNR) loss due to the use of spatially selective excitation for 

the non-Fourier encoding methods [40,47]. These problems do not arise with Fourier 

encoding, which uses linear gradients to encode the image information rather than 

spatially selective excitation. 

As discussed earlier, the truncated wavelet and SVD representations have the de- 

sirable property of representing an image well with fewer encodings than are necessary 

with the Fourier encoding method. To exploit these desirable properties for reduced- 

encoding dynamic imaging, the current methods use a reference image to guide the 

truncation of the set of encoding vectors. The danger in doing that is that the selected 

encodings may not be optimal for the representation of the dynamic image and, at 

times, the reference-based truncation can introduce dangerous artifacts. To illustrate 

this, simulations of two important dynamic imaging applications, a contrast-enhanced 

dynamic study and an interventional MRI needle biopsy procedure, are shown below. 

Figure 2.3 shows the results of a contrast-enhanced simulation in which the dy- 

namic changes involve a variable rate of enhancement in each of the four "lesions," 
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as well as a slow overall background enhancement. Figures 2.3(a)-(b) show the ref- 

erence and dynamic images, respectively, reconstructed using 128 phase encodings. 

Figures 2.3(c)-(f) show the dynamic image reconstructed using 16 dynamic encodings 

using the Fourier, orthogonal wavelet, biorthogonal wavelet and SVD encoding meth- 

ods, respectively. The SVD method results in a better delineation of the boundaries 

of the lesions than the other methods. However, it fails to faithfully reproduce the 

signal magnitudes in the lesions. This is quantified in Fig. 2.4 which shows the aver- 

age signal magnitude in each of the lesions as assigned by the different methods. Note 

that the SVD methods assign nearly the same signal magnitude to all four lesions, 

which is undesirable because the aim of this application is to accurately track the 

signal magnitude change in the lesions. 

In a needle biopsy application, the purpose of MR imaging is to accurately local- 

ize the needle to ensure that the lesion is biopsied as opposed to surrounding normal 

tissue. The results of a needle biopsy simulation are shown in Fig. 2.5 in which 

(a)-(b) are the reference and dynamic image, respectively, reconstructed using 256 

phase encodings. The dynamic image contains an additional dark line feature, sup- 

posedly created by the insertion of a biopsy needle. The dynamic image is shown 

in (c)-(f), reconstructed using 32 dynamic encodings with the Fourier, orthogonal 

wavelet, biorthogonal wavelet and SVD encoding methods, respectively. Note the 

apparent displacement of the center of the needle in the SVD image and the smeared 

version of the needle in the wavelet reconstructions. In the Fourier image, the familiar 

Gibbs ringing results from the sharp edge features. 

The smearing and displacement artifacts seen in the wavelet and SVD images 

are not due to the truncation level, but arise from the reference-based truncation 

method. To illustrate this, Figs. 2.6(a)-(c) were reconstructed using the optimal 32 

orthogonal wavelet, biorthogonal wavelet and SVD encodings as determined by the 

dynamic image itself. The greatly improved reconstruction of the needle over that in 

Figs. 2.5(d)-(f) attest the nonoptimality of the dynamic encodings selected using the 

reference image of Fig. 2.5(a). However, note the bright needle ghost artifact in the 

orthogonal wavelet case, which occurs due to the localized nature of the wavelet basis 

functions. 
18 
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Figure 2.3: Non-Fourier Encoding Applied to Contrast-enhanced Imaging. 
(a)-(b) The reference and dynamic images, respectively, reconstructed us- 
ing 128 phase encodings. The remaining images were reconstructed with 
16 dynamic encodings using different encoding methods: (c) Fourier, (d) 
orthogonal wavelet, (e) biorthogonal wavelet, and (f) SVD. The Fourier, 
wavelet and SVD encoding directions are vertical. Note that the SVD 
method assigns nearly the same signal magnitude to all four lesions. 
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Figure 2.4: Average Signal Magnitude of the Lesions of Fig. 2.3(b)-(f). 
Regions 1-4 correspond to the upper-left, upper-right, lower-left and lower- 
right lesions, respectively, in Fig. 2.3. 
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Figure 2.5: Non-Fourier Encoding Applied to Interventional MRI: (a)-(b) 
The reference and dynamic images, respectively, reconstructed using 256 
phase encodings. The remaining images were reconstructed using 32 dy- 
namic encodings with different encoding techniques: (c) Fourier, (d) or- 
thogonal wavelet, (e) biorthogonal wavelet and (f) SVD. The Fourier, 
wavelet and SVD encoding directions are horizontal. The arrow indicates 
the center of the needle track. Note the apparent displacement of the 
needle center in the SVD reconstruction. 
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Figure 2.6: Optimal Non-Fourier Encoding: Dynamic image reconstructed 
with 32 optimal encodings as derived from the dynamic image itself using 
(a) orthogonal wavelet, (b) biorthogonal wavelet and (c) SVD. The wavelet 
and SVD encoding directions are horizontal, and the arrow indicates the 
center of the needle track. Note the improvement over the images in 
Fig. 2.5(d)-(f), respectively, which were reconstructed using the 32 sub- 
optimal encodings as determined from the reference image in Fig. 2.5(a). 

2.5    Summary 

The use of a reference image as the a priori information to guide the reduced- 

encoding data acquisition process does not achieve the goal of exploiting the desirable 

truncation properties of the non-Fourier basis sets and, at times, can create dangerous 

artifacts. 
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CHAPTER  3 

IMAGE RECONSTRUCTION 

The image reconstruction question is: given the available data, 

ddyn(n) = (Idyn,e(n)) n e A/"dyn, (3.1) 

how can the original object function 7dyn be recovered? For the reduced-encoding case, 

the reconstructed object function is not unique, because there is not sufficient data 

available. In this case, a priori information can be used to help select a reconstruction 

from the set of possible choices. If a priori information is used, the key issue is 

how to effectively utilize it as a constraint during reconstruction [71] to recover the 

missing dynamic data ddyn(n),n ^ Mdyn- Three image reconstruction methods will 

be discussed in this section which use different strategies to handle the unmeasured 

dynamic data: zero-padded reconstruction, the data-replacement technique and the 

generalized-series method. 

3.1    Zero-Padded Reconstruction 

With the zero-padded reconstruction method, the unmeasured dynamic data are 

simply set to zero. More precisely, from the measured dynamic data ddyn(m), m e Mdyji, 

a zero-padded data set is created as 

(ddyn(m)    meAfdyn 
ddyn{m) = < (3.2) 

10 else, 

where the size of the resulting data set depends on the desired digital pixel size. This 

data set will then be processed with the conventional reconstruction method. 
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For example, with Fourier-encoded data, the image can be reconstructed using 

the discrete Fourier transform as 

M/2-1 

!dyn(nAr) = Ak    £    ddyn{mAk)ei2nI^, (3.3) 
m=-M/2 

where ddyn is the zero-padded Fourier encoded data set and M is the size of the zero- 

padded data set. The discrete Fourier transform reconstruction can be efficiently 

performed using the Fast Fourier transform (FFT), which is one of the reasons for 

the popularity of the Fourier encoding method in MRI. 

For orthogonal wavelet encoding, the original object can be reconstructed via the 

J level inverse wavelet transform as 

M2~J __ -J   M2~i   

I(r) =  £ A2-J{I} 2-J<t>{2-Jr - k) + £   £ V*{I) 7?<p{2?r - I),        (3.4) 

where A2-J{I} is the zero-padded set of approximation coefficients and T>2J{I} is 

the zero-padded set of wavelet coefficients. For biorthogonal wavelets, <fi and ip in 

Eq. (3.4) will be replaced by 4> and ft, respectively. 

In the case of SVD encoding, the SVD synthesis procedure is used for image 

reconstruction. If the dynamic data were acquired using pure vertical SVD encoding 

as in Eq. (2.11), the synthesis equation is 

-fdyn = U Sdyn, (3-5) 

where U is the matrix containing the full set of reference-left singular vectors and 

Sdyn is the zero-padded data matrix. To perform the zero-padding for this example, 

M — N rows of zeros are appended to the bottom of the measured data matrix S^n 

of Eq. (2.11), where M and iV are the number of SVD encodings measured for the 

reference and dynamic data sets, respectively. The zero-padding procedure can also 

be implicitly handled using the truncated SVD reconstruction procedure. For the 

pure vertical SVD encoding data set of Eq. (2.11), the measured data are multiplied 

by UN as 

-fdyn = UN Sdyn, (3-6) 
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where UN is the matrix constructed from the TV-left singular vectors selected for the 

dynamic encoding. 

3.2 Data-Replacement Technique 

With zero-padded reconstruction, it is assumed that the unmeasured data is unim- 

portant and can, therefore, be set to zero. For the keyhole or data-replacement tech- 

nique (DRT) [74,75], the underlying assumption is that the dynamic changes have 

a negligible effect on the unmeasured dynamic data points. With this assumption, 

the reference data can be used to directly substitute for the unmeasured dynamic 

data. If the measured dynamic data are d^^m),™ E A/dyn, and the reference data 

are dTef(m), m G J\fief, a full data set is created by 

ddynH = < (3.7) 
[ dref(m)        TU e Nieh m f Ndyn- 

After the merged data set is created, the conventional image reconstruction procedure 

is used to reconstruct the dynamic image. 

3.3 Generalized-Series Technique 

Another method to incorporate a priori reference information into the reconstruc- 

tion process is based on the generalized-series model. This method, called the reduced- 

encoding imaging by generalized-series reconstruction (RIGR) method [72,73], is use- 

ful for processing Fourier-encoded data. For wavelet and SVD-encoded data, there is 

no known better way to use the reference information in the reconstruction step than 

the keyhole method. 

The generalized-series (GS) model can be described by 

/dyn(r) = C(r)    £   cne
i2™Afcr, (3.8) 

neAfdyn 

where C{r) is the constraint function and Ak is the Fourier encoding step in A;-space. 
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Therefore, the RIGR basis functions are the set of constrained exponentials 

<p{r) = C(r) j2™Akr, (3.9) 

which contain a priori information from the constraint function. This results in a more 

rapidly convergent model than is possible with the infinite complex exponentials of 

the Fourier series. The specific form of the constraint function C(r) depends upon 

whether or not a valid phase constraint is available [73]. If a valid phase constraint 

is not available, the model will be more stable if the phase is removed, resulting in 

basis functions of the form 

^(r) = |7ref(r)|e
i27r"Afc-. (3.10) 

However, if a valid phase constraint is available, the dynamic changes will be better 

reproduced if the following basis functions are used 

(p(r) = \ITe{(r)\eie^ei2™Akr, (3.11) 

where 9(r) is the phase constraint. 

During the extrapolation, data consistency between the reconstructed image and 

the measured dynamic data is enforced during the determination of the GS coeffi- 

cients. If no phase is used, the data consistency constraint will force the GS parame- 

ters to absorb both the dynamic contrast changes and the phase variations. Therefore, 

it is desirable to have the sampling asymmetry small so that high-frequency phase 

variations will not introduce large asymmetric truncation artifacts. In this case, the 

N model parameters c„ must satisfy 

N/2-l 

ddyn(m)=    £   Cndraim-n) - N/2 < m < N/2 - 1, (3.12) 
n=-N/2 

where symmetric sampling of A;-space is assumed and 

dTei(m - n) = /     11^(0 |e"i2'r<m-'l>Afcrdr. (3.13) 
J — 00 

If phase constraints are used, the GS coefficients are forced to have Hermitian symme- 

try (i.e., cn = c*_n), because the parameters need to model only the dynamic contrast 
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changes. Due to this forced Hermitian symmetry, the GS model can be symmetric 

irrespective of the symmetry of the sampled dynamic data, resulting in a higher order 

model and, therefore, reduced truncation artifacts. The result is two sets of linear 

equations that specify the GS parameters as 

N-No-l 

ddyn(m)   = Y^        CndTe{(m-n) and (3.14a) 
n=-(N-N0-l) 

N-No-l 
d*dyn(m)   = £        cnd*Tef(m-n)        - N0 < m < N - N0 - l,(3.14b) 

n=-(N-N0-l) 

where dTef is the reference data. Because there are more equations than unknowns, 

this system should be solved in the least squares sense. Substituting the coefficients 

of Eq. (3.12) or (3.14) into the GS model will yield the desired dynamic image. 

3.4    Generalized Point Spread Function 

As discussed in Chapter 1, the width of the point spread function (PSF) gives 

a measure of the spatial resolution obtained from an imaging process. A common 

definition of the PSF width is the equivalent rectangle. Specifically, if h(r) is the 

PSF, the width w of the equivalent rectangle is defined by 

r /i(0)rect (-) dr = f°° h(r)dr, (3.15) 
J-oo \Wj J-oo 

where 
(1    \r\ < i 

rect(r) = {       ' '     2 (3.16) 
I 0   else. 

In the case of Fourier series reconstruction, the PSF is 

■Mr) = Aibsin(^A;^"i,rAtr. (3-17) sm(7rA«x) 

where Ne is the number of fc-space data points and Ak is the step size in &-space, and 

the corresponding PSF width Ar is 

Ar = . (3.18) 
NeAk {      ' 
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Note that the width of the PSF for Fourier imaging depends only upon the number 

of encodings that are acquired, given a fixed /c-space step size. On the other hand, 

for the case of constrained reconstruction methods and specifically for the case of GS 

reconstruction, the PSF width depends on both the number of encodings and the a 

priori information. 

For this reason, a generalized PSF analysis was performed where the reference 

image was a boxcar function, and the dynamic change between the reference and 

dynamic images was a point change. The location of the point change was varied 

within the boxcar. It was either located in the center, shifted one-fourth of the width 

of the boxcar from the center, or shifted almost one-half (0.49) of the width of the 

boxcar from the center. The analysis was repeated for varying reference boxcar widths 

and a varying number of dynamic encodings. 

Example profiles are shown in Fig. 3.1 for the case of eight dynamic encodings and 

a reference boxcar width of 0.03125 (FOV=l). To better show details of the plots, only 

the center fourth of the FOV is shown for each profile. Rows 1-3 depict the situation 

for a centered point change and a point change shifted one-fourth or one-half the 

width of the reference boxcar from the center, respectively. Figures 3.1(a)-(c) are the 

reference, dynamic and difference (point change) images, respectively, reconstructed 

using 512 phase encodings. Plots (d)-(e) show the point change reconstructed using 

the Fourier series and the generalized series, respectively. The reduced PSF width of 

the generalized series reconstruction when compared to the Fourier series is due to the 

fact that the generalized series basis functions contain information from the reference 

image, so they can more effectively reproduce the dynamic image for a given number 

of encodings than the infinite complex exponentials of the Fourier series. Note that 

in this case, the reference image contains no edge information for the new dynamic 

feature. 

The effects of the reference boxcar width and number of dynamic encodings on 

the width of the PSF can be seen in Fig. 3.2. As would be expected, the width of the 

GS PSF decreases with an increasing number of dynamic encodings. This also holds 

true for the Fourier series reconstruction.  Note also that the width of the GS PSF 
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Figure 3.1: PSF Profiles I: Rows 1-3 show the PSF results for a delta 
function change that is centered in the reference boxcar, shifted by one- 
fourth the width of the reference boxcar, and shift by just under one-half 
(0.49) of the width of the reference boxcar, respectively. The width of 
the reference boxcar was 0.03125 (FOV=l), but only the center fourth of 
the plot is shown for better visualization, (a)-(c) The reference image, 
dynamic image and point change image (difference image), respectively, 
reconstructed using 512 phase encodings, (d)-(e) The point change recon- 
structed using the Fourier series and generalized series, respectively, using 
eight dynamic encodings. Note that (a)-(c) are on a different scale than 
(d)-(e). 
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Figure 3.2: PSF vs Number of Dynamic Encodings: This plot shows the 
relationship of the width of the PSF versus the number of dynamic encod- 
ings used for the Fourier series and generalized series. In the simulations 
used to generate this plot, the point change was centered in the refer- 
ence boxcar. Note the reduced PSF width of the GS as compared to the 
Fourier series for all reference boxcar widths and all numbers of dynamic 
encodings. 
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decreases for decreasing width of the reference boxcar. Although no additional direct 

information is available about the dynamic change, the reference information of the 

narrower boxcars is better able to constrain the reconstruction of the new dynamic 

feature. For every reference boxcar width, the width of the PSF is smaller for the 

generalized series than for the Fourier series. In the limit that the reference boxcar 

width equals the FOV, the generalized series has the same PSF width as the Fourier 

series. In fact, for this case of no effective a priori knowledge, the generalized series 

reduces to the Fourier series. This is desirable, because in the case of no a priori 

knowledge, the Fourier series would be the optimal reconstruction method (in the 

least squares sense). 

The GS PSF width depends not only on the reference boxcar width, but also on 

the proximity of the point change to the nearest edge. This is illustrated in Fig. 3.3, 

which shows the PSF width as a function of the width of the reference boxcar for the 

Fourier series and the generalized series with various locations of the point change. 

Note that the PSF width of the generalized series decreases with increased proximity 

to an edge of the reference boxcar (i.e., increasing shift from the center). This occurs 

because the closer edge enables the GS basis functions to more effectively constrain 

the dynamic change reconstruction. 

If the high-resolution reference image contains edge information for the dynamic 

feature, the GS PSF will be further improved as illustrated in Fig. 3.4. As before, 

rows 1-3 show the reconstruction of a dynamic point change that is centered in the 

reference boxcar and shifted one-fourth or approximately one-half (0.49) the width 

of the reference boxcar from the center, respectively. Figures 3.4(a)-(d) show the 

baseline reference image, the active reference image, the dynamic image, and the 

point change image (difference between the dynamic image and the baseline reference 

image), respectively, reconstructed using 512 phase encodings. Plot (e) shows the 

reconstruction of the point change obtained using the GS model with the active 

reference image and eight dynamic encodings. It is easy to see the improved PSF by 

comparison to the corresponding rows of Fig. 3.1(e). 
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Figure 3.3: PSF vs Width of Reference Boxcar: This plot shows the re- 
lationship between the width of the PSF and the width of the reference 
boxcar for the Fourier series and generalized series for three locations of 
the point change. The simulations to generate this plot used 64 dynamic 
encodings. 
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Figure 3.4: PSF Profiles II: Rows 1-3 show the PSF results for a delta 
function change that is centered in the reference boxcar, shifted by one- 
fourth the width of the reference boxcar, and shift by just under one-half 
(0.49) of the width of the reference boxcar, respectively. The width of the 
reference boxcar was 0.03125 (FOV=l), but only the center fourth of the 
plot is shown for better visualization, (a)-(d) The baseline reference im- 
age, the active reference image, the dynamic image, and the point change 
image, respectively, reconstructed using 512 phase encodings, (e) The 
point change reconstructed using the GS model with the active reference 
image and eight dynamic encodings. Note that (a)-(c) are on a different 
scale than (d)-(e). 
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In summary, the GS model has a smaller PSF width than the Fourier series even 

if the reference image contains no edge information for the dynamic feature because 

nearby edges help constrain the reconstruction of the dynamic feature. If the reference 

image does contain edge information about the dynamic feature, the PSF width will 

be further reduced. 

3.5    Discussion 

For image reconstruction, the use of a priori information in the constrained re- 

construction techniques such as keyhole and RIGR can improve the resulting image 

appearance over that obtained through simple zero-padded reconstruction. However, 

the actual improvement gained will vary greatly depending upon the method of uti- 

lizing the a priori information. Although the keyhole method has been applied to 

reduced-encoding dynamic imaging applications due to its simplicity [67,81,82], it 

is important to note that the Fourier-keyhole method can only track the dynamic 

changes at the low resolution of 1/NAk, where N is the number of reduced dynamic 

encodings1 [81,83,84]. This occurs because the keyhole method has the same PSF 

as the zero-padded Fourier series for reconstructing the dynamic changes. This can 

easily be seen as 

/diff(r)     =    Idyn(r) ~ ITef{r) 

J2   dTef(n)e —i27rnAkr 
+     5Z     <kyn(n)e~ 

n^A/^ yn neK 

Y2 dTe{(n)e -i2nnAkr } 
=      J2    {ddyn(n) - dTef(n)} e 

dyn 

-i2imAkr 

'S 

(3.19a) 

i27rnAkr (3.19b) 

(3.19c) 

(3.19d) 
neK dyn 

On the other hand, the spatial resolution of the RIGR image depends upon both the 

dynamic and reference data sets. If well-defined boundaries for the feature exist in the 

reference image, it will be reconstructed with the spatial resolution of the reference 
1For the wavelet-keyhole and SVD-keyhole methods, the resolution at which the dynamic changes 

can be followed will depend on the relationship between the dynamic changes and the selected wavelet 
or SVD encoding profiles. 
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image 1/MAk, where M is the number of reference encodings [73]. However, as 

was shown in the previous section, even if the dynamic changes introduce new edges 

to the image, the spatial resolution of these features can be improved over 1/NAk, 

because nearby edges in the reference image help to constrain the reconstruction of 

the new features. Therefore, with the same number of dynamic encodings, RIGR can 

reconstruct the dynamic changes with a greater spatial resolution than is possible with 

Fourier-keyhole. The effect of this can be seen in Fig. 3.5 in which (a)-(b) are the 

reference and dynamic images, respectively, reconstructed using 256 phase encodings. 

Figure 3.5(c) is the difference between these two images, effectively an image of the 

dynamic changes. Figures 3.5(d)-(e) show the difference image reconstructed with 

32 dynamic encodings using Fourier-keyhole (or, equivalently, zero-padded Fourier 

series) and RIGR, respectively. Note that the RIGR method follows the dynamic 

changes at a much higher resolution than Fourier-keyhole. 

In addition, image artifacts can arise due to data inconsistency between the refer- 

ence and dynamic data sets with the keyhole method [85,86]. In the keyhole method 

where the reference data are simply pasted on the dynamic data, there is no guar- 

antee of consistency between the reference and dynamic data sets. This can lead to 

image artifacts. In contrast, the unmeasured high-frequency dynamic data extrapo- 

lated using the GS model are (N — l)th order continuous with the measured dynamic 

data [73]. This leads to reduced artifacts in the reconstructed dynamic image. This 

is illustrated in Fig. 3.6 in which (a)-(b) are the reference and dynamic images, re- 

spectively, reconstructed with 128 phase encodings. Images (c)-(d) show the dynamic 

image reconstructed with 16 dynamic encodings using the Fourier-keyhole and RIGR 

methods, respectively. Note the data inconsistency artifacts in the Fourier-keyhole 

image, which are equivalent to a high-pass filtered version of the reference image.2 

On the other hand, the RIGR method can handle the data inconsistency between the 

reference and dynamic data sets due to the GS model-based extrapolation. 

2Data inconsistency artifacts will also arise with the wavelet-keyhole and SVD-keyhole reconstruc- 
tion methods, although the appearance of the artifacts will differ from those of the Fourier-keyhole 
method. 
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Figure 3.5: Dynamic Change Images: (a)-(c) The reference and dynamic 
images and the difference between the two, respectively, (d)-(e) The dif- 
ference image reconstructed using 32 dynamic encodings with Fourier- 
keyhole (or, equivalently, zero-padded Fourier series) and RIGR, respec- 
tively. Note the improved reconstruction of the dynamic changes with the 
RIGR method. 
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Figure 3.6: Keyhole Data Inconsistency Artifact: (a)-(b) The reference 
and dynamic images, respectively, reconstructed using 128 phase encod- 
ings. (c)-(d) The dynamic image reconstructed with 16 dynamic encod- 
ings using Fourier-keyhole and RIGR, respectively. The phase encoding 
direction is horizontal. Note the edge artifacts that appear in the Fourier- 
keyhole image. 
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3.6    Summary 

If the a priori information that is available is a reference image, it is better used 

in the image reconstruction process than the data-acquisition step. For image recon- 

struction with Fourier encoding, the RIGR method is the best way to extrapolate the 

unmeasured data using the a priori constraints due to the higher resolution tracking 

of the dynamic changes and the reduced data inconsistency artifacts. 
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CHAPTER  4 

TWO-REFERENCE RIGR 

With the Fourier series, the spatial resolution of the reconstructed image depends 

solely upon the number of terms used in the series. On the other hand, the spa- 

tial resolution obtained with the generalized series (GS) model depends on both the 

number of terms and the GS basis functions. Due to the limited number of terms 

in the GS model, it would be better if only the areas of change were represented in 

the GS basis functions. The proposed two-reference reduced-encoding imaging by 

generalized-series reconstruction (TRIGR) method [87,88] tries to achieve this by 

suppressing the background information in the GS basis functions through the use of 

a second high-resolution active reference image. 

The motivation behind the research presented here is the consideration that, in 

some dynamic imaging applications, the dynamic process may change the appearance 

of parts of the image, while other parts remain relatively unchanged. For example, 

in contrast-enhanced dynamic imaging of breast cancer, where the aim is to track 

the changes that occur in the breast for several minutes following the injection of a 

contrast agent, the contrast between the tumor and the normal tissue may change 

drastically over the dynamic imaging period. The TRIGR method is well-suited for 

this application, because a second high-resolution reference image can be acquired 

following the dynamic imaging period when the contrast agent is strongly visible 

in the image. The second reference image can be used to suppress the background 

information in the generalized-series basis functions, thus improving the reconstructed 

dynamic image. 

38 



4.1    Two-Reference RIGR 

Data acquisition for the proposed method is similar to the original RIGR method. 

A high-resolution baseline reference data set is acquired where the number of phase 

encodings is chosen to satisfy the spatial resolution requirements. This is followed by 

the acquisition of a series of reduced-encoding dynamic data sets where the number of 

Fourier encodings per set is chosen to give the desired temporal resolution. The high- 

resolution active reference data set is typically acquired at the end of the dynamic 

imaging period, although for some applications it may be desirable to place it at 

another point in the experimental procedure. 

The proposed method suppresses background information in the GS basis func- 

tions through the use of a difference reference image which is created as 

-^ref   —   -^"{^ref}   =   ^"{^active ~~ ^baseline}; (4-1) 

where ^active and baseline are the high-resolution active and baseline reference data 

sets, respectively. The GS basis functions become the set of constrained exponentials 

/refe
i27rnAfcr, resulting in the model 

N/2-\ 

/diff(r) = /ref(r)    £    cBea,n,Afcp
> (4-2) 

n=-N/2 

where N is the number of dynamic encodings and symmetric &-space sampling has 

been assumed. Note that the TRIGR method directly reconstructs an image of the 

dynamic change. As such, the difference between the reduced dynamic encodings and 

the corresponding baseline reference encodings are used to determine the GS model 

coefficients. Specifically, the GS model coefficients cn are obtained through a fitting 

step to maintain data consistency as 

N/2-1 

ddiff("i) =    53    cndxef{m - n), (4.3) 
n=-JV/2 

where the dynamic difference data are obtained by subtracting from the dynamic 

data the corresponding encodings of the baseline reference image as 

-N N 
ddiS(nAk) = ddyn(nAk) - dhaseVme(nAk)        -— < n < — - 1. (4.4) 
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Plugging these coefficients into Eq. (4.2) will yield the reconstructed dynamic change 

image. If the dynamic image itself is desired, it can be generated by adding the 

complex dynamic change image to the baseline reference image as 

Idyn(r) =/baseline M     +     Wr)> (45) 

where /baseline(r) is reconstructed from dhaseiine(nAk) using the standard Fourier tech- 

nique. 

The background information suppression achieved with this technique can result 

in significant improvement in the generalized PSF, as illustrated in Fig. 4.1. As be- 

fore, rows 1-3 show the reconstruction of a dynamic point change that is centered 

in the reference boxcar and shifted one-fourth or approximately one-half (0.49) the 

width of the reference boxcar from the center, respectively. Figures 4.1(a)-(d) show 

the baseline reference image, the active reference image, the dynamic image, and the 

point change image (difference between the dynamic image and the baseline refer- 

ence image), respectively, reconstructed using 512 phase encodings. Plot (e) shows 

the reconstruction obtained using the GS model with the difference reference image 

(active - baseline) and eight dynamic encodings. It is easy to see the improvement 

in the PSF due to the suppression of the background information in the difference 

reference image by comparison to the corresponding rows of Fig. 3.4(e). Although 

the case shown in Fig. 3.4 has the same amount of edge information for the dynamic 

feature, the background suppression provides additional improvement. Of course, this 

is the ideal case of complete background suppression. As the background information 

is less completely suppressed, the improvement seen with the TRIGR method will 

not be as great. 

One could consider employing a similar methodology with the keyhole constrained 

reconstruction method by appending the high-frequency difference reference data to 

the low-frequency dynamic difference data sets followed by the inverse Fourier trans- 

form. Although the resulting dynamic images will be high-resolution, it is easy to 

prove that the actual dynamic signal changes will still be reconstructed with low- 

resolution.   This behavior is similar to the single-reference image case analyzed by 
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Figure 4.1: PSF Profiles III: Rows 1-3 show the PSF results for a delta 
function change that is centered in the reference boxcar, shifted by one- 
fourth the width of the reference boxcar, and shift by just under one-half 
(0.49) of the width of the reference boxcar, respectively. The width of 
the reference boxcar was 0.03125 (FOV=l), but only the center fourth 
of the plot is shown for better visualization, (a)-(d) The baseline refer- 
ence image, the active reference image, the dynamic image, and the point 
change image, respectively, reconstructed using 512 phase encodings, (e) 
The point change reconstructed using the GS model with the a difference 
reference image (active-baseline) and eight dynamic encodings. Note that 
(a)-(c) are on a different scale than (d)-(e). 
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Spraggins [84] and Hu [83]; that is, no benefit is gained from the use of two-reference 

images in this keyhole scheme. 

4.2    Results and Discussion 

The proposed method was compared to the zero-padded Fourier transform and 

the original RIGR method using computer simulations. From a sequence of high- 

resolution data sets, baseline and active reference data sets were chosen. The central 

N encodings of the remaining data sets were used as the dynamic data sets, and 

the dynamic image was reconstructed with the three methods. The high-resolution 

dynamic image was reconstructed for comparison. 

As mentioned before, the improvement of the proposed technique over the original 

RIGR method depends upon the degree of background suppression. The ideal case 

is if the difference image completely suppresses the background information. This 

case is illustrated in Figs. 4.2 rows 1-3 which show the resulting images and profiles 

through the upper and lower set of lesions, respectively, for a contrast-enhanced 

simulation in which the background tissue is completely suppressed in the difference 

reference image. In these figures, (a)-(c) are the precontrast reference, postcontrast 

reference and dynamic images, respectively, reconstructed using 128 phase encodings. 

Images (d)-(e) were reconstructed using RIGR with 16 dynamic encodings and the 

precontrast or postcontrast reference image, respectively. Image (f) was reconstructed 

using 16 dynamic encodings with the proposed method. The TRIGR method results 

in an improved reconstruction of the dynamic image because the GS basis functions 

need only represent the dynamic changes. 

As the difference reference image suppresses the background less effectively, the 

performance improvement with the proposed method decreases. This is demonstrated 

in Fig. 4.3 rows 1-3 which show the images and profiles through the upper and lower 

set of lesions, respectively, resulting from a simulation in which the background tissue 

is not suppressed completely in the difference reference image. Figures 4.3 (a)-(c) are 

the precontrast reference, postcontrast reference and dynamic images, respectively, 
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Figure 4.2: TRIGR With Complete Background Suppression: Images (row 
1) and profiles through the upper and lower set of lesions (rows 2-3, re- 
spectively). (a)-(c) The baseline reference, active reference and dynamic 
images, respectively, reconstructed using 128 phase encodings, (d)-(e) The 
dynamic image reconstructed using 16 dynamic encodings with RIGR us- 
ing the baseline and active reference images, respectively, (f) The dynamic 
image reconstructed using 16 dynamic encodings with TRIGR. 

reconstructed using 128 phase encodings. Images (c)-(f) were reconstructed with 

16 dynamic encodings using RIGR with the precontrast reference, RIGR with the 

postcontrast reference and the proposed method, respectively. The improvement 

from using TRIGR is much less in this case than in Fig. 4.2, because the background 

is not as well suppressed. 

The results of all constrained image reconstruction techniques depend upon the 

validity of the a priori constraints. As with RIGR, the results of the proposed method 

depend upon the choice of the baseline reference image. In addition, the active 

reference image will also affect the outcome of the TRIGR reconstruction process. 

As would be expected, the more similar the baseline or active reference image is to 

the dynamic image, the better the reconstruction. This effect is illustrated in the 

following simulation, which investigates the performance of the TRIGR algorithm 
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Figure 4.3: TRIGR With Incomplete Background Suppression: Images 
(row 1) and profiles through the upper and lower set of lesions (rows 
2-3, respectively), (a)-(c) The baseline reference, active reference and 
dynamic images, respectively, reconstructed using 128 phase encodings. 
(d)-(e) The dynamic image reconstructed using 16 dynamic encodings with 
RIGR using the baseline and active reference images, respectively, (f) The 
dynamic image reconstructed using 16 dynamic encodings with TRIGR. 

with different active reference images. The reference images shown in the top row 

of Fig. 4.4 are from different time points in a contrast-enhanced dynamic imaging 

simulation. Rows 2 and 3 show profiles through the upper and lower set of lesions, 

respectively. All of the images in this figure were reconstructed using 128 phase 

encodings. 

Figure 4.5 rows 1-3 show the resulting images and profiles through the upper and 

lower set of lesions, respectively, of a TRIGR simulation in which Fig. 4.4(d) was 

used as the dynamic image. For comparison purposes, Fig. 4.5(a) is the dynamic 

image reconstructed using 128 phase encodings. Figures 4.5(b)-(f) show the TRIGR 

reconstruction obtained with eight dynamic encodings using Fig. 4.4(a) as the base- 

line reference image and Figs. 4.4(b)-(f), respectively, as the active reference image. 

Therefore, (b)-(c) use an active reference that is less enhanced than the dynamic 
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Figure 4.4: Contrast-enhanced Simulation Reference Images: Row 1 shows 
images from different time points in a contrast-enhanced dynamic imaging 
simulation reconstructed using 128 phase encodings. Rows 2 and 3 show 
profiles through the upper and lower set of lesions, respectively. 

image, (e)-(f) use an active reference that is more enhanced than the dynamic image, 

and (d) uses the ideal active reference image, i.e., the dynamic image itself. Note 

that the lesion reconstruction is improved with a more similar reference image. This 

suggests that, in some situations, it may be desirable to acquire reference images 

at various points in the experimental procedure and then use the appropriate two 

references for the reconstruction of a particular dynamic image. 

The effect of the choice of active reference image can be seen in actual MRI images 

such as those shown in Fig. 4.6. The data for this simulation is from a contrast- 

enhanced dynamic imaging study of a rat with breast cancer. A spin-echo sequence 

(TR 300/TE 20) was used to collect the data. A high-resolution precontrast reference 

data set was first acquired. The contrast agent was then injected and a series of 

dynamic data sets was acquired as the contrast agent washed into the slice. One of the 

data sets from the dynamic imaging period was selected as the dynamic data set for 

this simulation. Two of the other data sets were used for the active reference images. 
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Figure 4.5: TRIGR with Different Active Reference Images: Images (row 
1) and profiles through the upper and lower set of lesions (rows 2-3, re- 
spectively), (a) Dynamic image reconstructed using 128 phase encod- 
ings. The remaining images (b)-(f) were reconstructed with TRIGR using 
Fig. 4.4(a) as the baseline reference, Fig. 4.4(d) as the dynamic image and 
Fig. 4.4(b)-(f), respectively, as the active reference. The TRIGR images 
were reconstructed using eight dynamic phase encodings. 

Figures 4.6 (a)-(d) are the precontrast reference image, a less-enhanced postcontrast 

reference image, a more-enhanced postcontrast reference image, and the dynamic 

image, respectively, reconstructed using 256 phase encodings. Figures 4.6(e)-(f) show 

the TRIGR reconstruction resulting from using eight dynamic encodings with (b) 

and (c), respectively, as the postcontrast reference image. The influence of the active 

reference image can easily be seen in (e)-(f). Because only eight dynamic encodings 

were used, the effect of the active reference image on the reconstructed dynamic image 

is stronger than if a larger number of dynamic encodings were used. 
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Figure 4.6: Contrast-enhanced Study Images: (a)-(c) are the precontrast 
reference image and two different postcontrast reference images recon- 
structed using 256 phase encodings, (d) The dynamic image reconstructed 
using 256 phase encodings, (e)-(f) The dynamic image reconstructed us- 
ing TRIGR with eight dynamic encodings using (b)-(c), respectively, as 
the postcontrast reference image. This corresponds to a less-enhanced 
postcontrast reference image for (e) and a more-enhanced postcontrast 
reference image for (f). 

4.3    Summary 

The proposed dynamic imaging method can produce improved dynamic images 

over the original RIGR method, if the difference reference image can provide a level 

of suppression of the background information. The benefit derived from the proposed 

method increases with the level of background suppression. The method should prove 

valuable in applications such as contrast-enhanced dynamic studies, functional imag- 

ing, and interventional MRI. 
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CHAPTER  5 

GS WITH EXPLICIT BOUNDARY 
CONSTRAINTS 

Recall that the GS reconstruction formula is given by 

/dyn(r) = £cnC(r)e-i2™Afcr. (5.1) 
n 

Clearly, the resulting image quality will improve as the basis functions approach those 

that would be derived from the dynamic image itself, i.e., if 

C(r)e-i2™A*r =» Idyn(r)e-i27rnAkr. (5.2) 

In particular, because the GS coefficients cn are global, the better the contrast re- 

lationship in the constraint function C(r) matches that in the dynamic image, the 

better the resulting reconstruction. If the contrast in the reference and dynamic im- 

ages is the same, it is helpful to build the reference contrast information into the 

GS basis functions. On the other hand, if the contrast relationship is not the same, 

only the boundary information from the reference image should be used to constrain 

the reconstruction. The proposed method uses explicit edge information from the 

reference image along with contrast information from the dynamic data to improve 

the GS basis functions. This differs from the GS methods described earlier, which 

use the dynamic data only to determine the GS coefficients. 

The proposed method is particularly applicable for dynamic imaging applications 

such as contrast-enhanced studies in which the contrast relationship between regions 

of the image can differ significantly from that seen in a precontrast or postcontrast 

reference image. By modifying the contrast in the reference image to more closely 

align with that of the dynamic image, the GS basis functions derived from the new 
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reference image will be better able to represent the dynamic image, leading to an 

improved dynamic image reconstruction. 

5.1    Generalized Series Model With Explicit Edge 
Constraints 

The GS model represents the dynamic image as a contrast modulation of the 

underlying high-resolution reference image as 

/dyn(r) = /ref(r)   £   c(n)e-am*kr = II*(r)Cm(r), (5.3) 
neMdyn 

where Cm{r) is the contrast modulation function. Therefore, the dynamic changes 

reproduced by the GS model may not have the same resolution as the reference image, 

because the contrast modulation function is limited by the number of terms in the 

model, which is in turn determined by the number of dynamic encodings. To alleviate 

this problem, the proposed method seeks to incorporate dynamic information into the 

basis functions in addition to the GS parameters. 

To illustrate this idea, consider segmenting the reference image and selecting 

Nreg < N of the most important regions 7£n, where iV is the number of dynamic 

encodings. To a first approximation, the difference between the dynamic and refer- 

ence images can be represented as 

{dn    r € 7ln 
(5.4) 

0     else. 

In the ID case, this can also be expressed as 

I*reg 

idiff(r) = £ dn W(r - en) - U(r - en+1)], (5.5) 

where U is the unit step function and en are the edges extracted from the high- 

resolution reference image. The dn can be obtained by fitting the difference between 

the dynamic data and the corresponding encodings of the reference data to the model 

in Eq. (5.5). The resulting dynamic change image will have high-resolution dynamic 
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variations, because the region boundary locations are not limited by the number of 

dynamic encodings. To utilize this information in the GS model, a new reference 

image is created as 

/ref(r)=/ref(r) + /diff(r). (5,6) 

The resulting GS basis functions will contain dynamic information. 

Higher-order dynamic changes can be modeled through the use of a higher-order 

polynomial model or another set of basis functions, such as wavelets, in each region. 

However, this leads to problems for this application due to the large amount of data 

that would be required for reliable fitting. For the example above of modeling each 

region with a boxcar function, if the edges are known exactly, one parameter per 

region is necessary to characterize the function exactly. Higher-order behavior would 

require a corresponding increase in the number of parameters. Due to the small 

amount of dynamic data that is available in this application, the number of regions 

and the model order in each region must be limited to ensure the stability of the 

fitting step. This leads to an averaging of adjacent regions, resulting in a blurring 

effect. 

To alleviate this problem, the proposed method determines the average signal 

magnitude change for each of the regions detected by the edge extraction. Therefore, 

because no fitting step is required, all of the regions can be used, which reduces the 

averaging effect. As mentioned earlier, the extracted edges are used to determine 

the dynamic change between the reference image and dynamic image, as opposed to 

the new reference image itself. This will further reduce the averaging effect, as well 

as reduce the adverse effects of edges that are not accurately detected by the edge 

extraction step. 

For this application, a multiscale edge detection approach is desirable, because it 

is expected that image edges will appear at many scales. In addition, the boundary 

extraction step should result in closed edges to allow easy determination of the regions 

in the image. The particular method used for this research was the multiresolution 

edge detection scheme developed by Ahuja [89,90]. In contrast to the multiscale edge 
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detection that can be performed by some wavelet transforms, the concept of scale 

in the multiresolution edge detection scheme relates to both physical proximity and 

greyscale similarity, as opposed to the size of the edge itself, which is beneficial for 

this application. 

The specific steps for applying the proposed method to a high-resolution refer- 

ence image and a low-resolution dynamic data set are as follows. First, a zero-padded 

difference image IdiS is created by subtracting the corresponding reference encodings 

from the dynamic encodings and reconstructing using the zero-padded Fourier tran- 

form. For each of the regions detected in the reference image, the average magnitude 

of the zero-padded difference image is calculated. (Note that the number of regions 

used is not limited by the number of dynamic encodings.) The result will be an image 

of the average signal magnitude change in each of the regions. The phase of the zero- 

padded difference image is reintroduced during the creation of the new constraint 

function for the GS model. If the original constraint function is a baseline reference 

image, the new reference image is 

-^baseline = -fbaseline + -^diff.ave e'    dlff> (5-7) 

or, for the active reference case, the new reference image is 

-^active = -^active — -^diff,ave e*    dlff, (5-8) 

where idiff.ave is the average signal magnitude change image and Ll^m is the phase of 

the zero-padded difference image. This new reference image is used as the constraint 

function in the GS model to reconstruct the dynamic image. 

5.2    Results and Discussion 

The proposed method was compared to the original RIGR method with computer 

simulations on experimental MRI data using both baseline and active reference im- 

ages. The experimental data shown here are from the contrast-enhanced dynamic 

imaging study of a cancerous rat described in Chapter 4. As before, the central JV 

encodings of the dynamic data sets were used as the reduced-encoding dynamic data. 
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Figure 5.1: Explicit Edge Information with Precontrast Reference Image: 
(a)-(b) The original precontrast reference and dynamic images, respec- 
tively, reconstructed using 256 phase encodings, (c)-(d) The dynamic im- 
age reconstructed using 32 dynamic encodings with the original RIGR 
method and the proposed method, respectively. 

The results of applying the proposed method with a precontrast reference image 

are shown in Fig. 5.1. Images (a)-(b) are the original reference and dynamic images, 

respectively, reconstructed using 256 phase encodings. Images (c)-(d) are the dynamic 

image reconstructed using 32 dynamic encodings with the original RIGR method and 

the proposed method, respectively. Note the improved reproduction of the signal 

magnitude in the contrast-enhanced tumor with the proposed method. 

The edge extraction step appears to currently be the limiting step in the process. 

In the RIGR image of Fig. 5.1(d), the blockiness of the detected regions is apparent, 

in particular at the outer edges of the lesion. This can be reduced in some situations 
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Figure 5.2: Explicit Edge Information with Postcontrast Image: (a)-(b) 
The original postcontrast reference and dynamic images, respectively, re- 
constructed using 256 phase encodings, (c)-(d) The dynamic image recon- 
structed with 32 dynamic encodings using the original RIGR method and 
the proposed method, respectively. 

by using an active reference image in which the contrast between adjacent regions 

is larger, making it easier for the edge extraction step to detect the edges well. In 

addition, if there is no edge information about a new feature in the reference image, 

the edge extraction step will not capture it. The result is that the new feature 

will be averaged in with a surrounding area in the contrast difference determination 

step. This also supports the use of an active reference image, because it may contain 

additional edges introduced by the dynamic changes. 

Both of these effects can be seen in Fig. 5.2, which shows the results of using 

edge information extracted from a postcontrast reference image. Images (a)-(b) are 
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the original postcontrast reference image and the dynamic image, respectively, re- 

constructed using 256 phase encodings. Images (c)-(d) show the dynamic image 

reconstructed with 32 dynamic encodings using the original RIGR method and the 

proposed method, respectively. Image (d) has a sharper reproduction of some of the 

internal details of the tumor such as those indicated by the arrows. However, the 

improvement between (c)-(d) is not as great as between Figs. 5.1(c)-(d) because the 

contrast in the postcontrast reference image is more similar to the dynamic image 

than the contrast in the precontrast reference image. 

5.3    Summary 

A method has been developed to use explicit edge information extracted from 

a high-resolution reference image to inject dynamic information into the GS basis 

functions. If possible, it is preferable to use an active reference image for the edge 

extraction step, because it may result in better detection of the image regions. 
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CHAPTER   6 

MOTION-COMPENSATED DYNAMIC 
IMAGING 

Object motion is often a problem for MR imaging. For convenience, it is useful to 

categorize object motion in terms of its temporal and physical characteristics. If the 

motion occurs during one TR period, it is referred to as intraview motion; whereas, 

motion that occurs between TR periods is called interview motion. In addition, motion 

that occurs between complete data sets is called interset motion. In conventional 

MRI, intraview and interview motion of the object can cause image artifacts, because 

it destroys the encoding relationship in the imaging equation, although the former is 

not usually a problem due to the short times involved. In addition to intraview and 

interview motion, interset motion is also a problem for constrained dynamic imaging, 

because motion of the object between the reference and dynamic data sets can render 

the reference information useless as a constraint for image reconstruction. 

An approach to overcome this problem is to detect the object motion before the 

constrained reconstruction step is performed. However, detection of object motion in 

reduced-encoding dynamic imaging is nontrivial due to several factors. First, dynamic 

image contrast changes and object motion are mixed together. Second, the dynamic 

data sets are low-resolution, and it is usually necessary to detect motion to a higher 

accuracy than that dictated by the low-resolution Fourier pixel size. To overcome 

these problems, we propose to use a similarity norm which can accurately detect the 

motion in spite of the contrast changes and the low-resolution nature of the dynamic 

data. The similarity norm tries to remove the effects of the contrast change by using 

only the edges from the high-resolution reference image for the motion estimation. 

55 



6.1    Similarity Norm-Based Motion Estimation 

Given two images Ix and I2, we assume that 

h(x,y) ~ Ii(xcos60 - ysin90 + x0,xsm90 + ycos90 + yo). (6.1) 

That is to say, there is a relative rigid-body rotation and translation between Ix and 

J2, as specified by x0, y0, and 60. The tilde signifies that Ix and I2 can have different 

contrast behavior. Therefore, the goal of the motion-estimation step is to find x0, y0, 

and 9Q. 

Assuming that I2 is a low-resolution image and Ix is a high-resolution image, we 

first segment Ix into a number of "homogeneous" regions. The strategy here is to use 

these region boundaries as landmark features. We superimpose this region structure 

onto 72 and then calculate the regional intensity inhomogeneity of. We argue that 

this inhomogeneity is a good indicator of the misalignment between the two images. 

Specifically, we define the misalignment error Ea as 

Ea = Ja 

\ 

Nrez m, 
£ 77*?, (6-2) 
1=1  JV 

where iVreg is the number of regions, mi is the number of pixels in each region and 

N is the total number of pixels. Clearly, the value of Ea is a function of the motion 

parameters. By minimizing Ea, the values of x0, y0, and 90 can be found. The 

estimated-motion parameters that minimize Ea are then used in the GS model as 

/dyn(r) = Test/ref(r)   £   cne~i2™Akr, (6.3) 
neMdyn 

where Test is the transformation that corresponds to the estimated-motion parameters. 

The proposed method is applied to a sequence of dynamic images in turn, so that 

the dynamic data set is compared to a high-resolution image that should have a more 

similar edge structure than the original reference image. First, the motion between 

the high-resolution reference image and the first dynamic data set is measured. These 

measurements are used to correct and reconstruct the first GS dynamic image. This 
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high-resolution GS image is used with the second dynamic data set to determine the 

motion that occurred between these two acquisition times. The cumulative motion 

measurements are used with the reference image to reconstruct the second GS dy- 

namic image. This procedure is repeated for the entire image sequence. Note that 

the dynamic image is reconstructed using the original high-resolution reference image 

to reduce errors that could arise due to the accumulated motion correction. 

If it cannot be assumed that no appreciable motion occurs during the collection 

of a particular reduced-encoding dynamic data set, other methods will have to be 

employed to measure this intraset motion. One possible way to do that is by using 

navigator techniques [91] that acquire a "navigator echo" during each view in addition 

to the image information. Each navigator echo is then compared to an initial reference 

navigator echo using correlation [91] or a least squares technique [92-94] to determine 

the motion along the navigator direction. Additional navigator echoes can be used 

to measure motion in the other directions, or orbital navigator echoes [93] can be 

used to simultaneously measure the two directions of translation and rotation in a 

plane. Although the navigator techniques are being used in many applications, the 

methods cannot be directly applied to dynamic imaging, because the basic assumption 

of the navigator echo method will be violated; namely, that all of the changes in the 

navigator data are due to motion of the object. This causes a problem in dynamic 

imaging in which the navigator data from each view can look very different even 

without motion, leading to incorrect motion estimates. 

One may try to get around this by comparing a navigator to the immediately 

preceeding navigator to determine the motion parameters as opposed to an initial 

reference' navigator. Although this should reduce the effect of the dynamic changes 

on the navigator data, the incremental motion may be too small to be detected with 

this method. Then, because the motion at a point in time would be the accumulation 

of the measured incremental motions up to that time, the error in the motion estimate 

may become quite large. 

Perhaps a better way to use the navigator method with dynamic imaging applica- 

tions is to design the pulse sequence such that the navigator signal is not sensitive to 
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the contrast changes. For example, consider a contrast-enhanced dynamic study us- 

ing a T2 contrast agent. The T2 contrast agent modifies the appearance of the tissues 

which take it up by changing the T2 relaxation constant. Therefore, the image data 

should be sensitive to the change in T2, but the effect of T2 on the navigator data 

should be minimal. A possible way to accomplish this is to acquire the FID signal 

following the RF excitation pulse as the navigator data and use the echo signal as the 

image data. In this way, the image can be T2 weighted, but the navigator signal will 

be proton density weighted. This method would require careful design of the pulse 

sequence with the given application in mind. 

In many cases, the motion may occur in three dimensions, as opposed to the 

planar motion discussed here. In this case, the solution will depend upon whether 

the imaging sequence is acquiring 2D slices or a 3D volume. In the case of 2D slices, 

the excitation and signal reception locations will need to be dynamically adapted 

based on the detected motion perpendicular to the imaging plane [95]. The in-plane 

motion can then be addressed, as discussed previously. For 3D imaging, the motion 

detection scheme would have to be expanded to detect all six degrees of motion (three 

translations and three rotations). 

6.2    Results and Discussion 

Computer simulations were performed to characterize the motion artifacts that 

can arise with the generalized series (GS) model due to interset motion. The sim- 

ulations investigated the three in-plane motions: translation in the phase-encoding 

direction, translation in the frequency-encoding direction, and rotation. The ref- 

erence image shown in Fig. 6.1(a) was used for all cases in the simulation. The 

high-resolution dynamic image is shown in Fig. 6.1(b) for the case of no translation 

or rotation from the reference position. Both of these images were reconstructed using 

128 phase-encodings. 

The first motion that was investigated was translation in the phase-encoding di- 

rection. Figure 6.2 rows 1-3 show the dynamic image and profiles through the upper 
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Figure 6.1: Motion Study High-Resolution Images: (a)-(b) Precontrast 
reference image used for all simulations and dynamic image with no trans- 
lation or rotation from the reference position, respectively. Both images 
were reconstructed using 128 phase-encodings. 

Figure 6.2: Motion Study (Translation in Phase-Encoding Direction): 
(rows 1-3) Dynamic images and profiles through the upper and lower le- 
sions, respectively, reconstructed using GS with 32 dynamic encodings for 
translations of 0, 1, 2, 3, 4 and 5 pixels ((a)-(f), respectively) in the phase- 
encoding direction (horizontal) between the reference and dynamic data 
acquisitions. 
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Figure 6.3: Motion Study (Translation in Frequency-Encoding Direction): 
(rows 1-3) Dynamic images and profiles through the left and right le- 
sions, respectively, reconstructed using GS with 32 dynamic encodings 
for translations of 0, 1, 2, 3, 4 and 5 pixels ((a)-(f), respectively) in the 
frequency-encoding direction (vertical) between the reference and dynamic 
data acquisitions. 

and lower set of lesions, respectively, reconstructed using 32 dynamic encodings with 

the GS model. Images (a)-(f) correspond to a translation of 0, 1, 2, 3, 4 and 5 pixels, 

respectively, in the phase-encoding direction (horizontal) between the reference and 

the dynamic data sets. Note the ringing artifact extending from the right side of the 

phantom. As would be expected, the ringing is worse for larger motions and for a 

smaller number of dynamic encodings. Note that these artifacts arise, even though 

the translation is smaller in all cases than the low-resolution Fourier pixel size. 

The simulations were repeated for translation occurring in the frequency-encoding 

direction (vertical) between the acquisition of the reference and dynamic data sets. 

The dynamic image and profiles through the left and right set of lesions resulting 

from a GS reconstruction using 32 dynamic encodings are shown in Fig. 6.3 rows 1-3, 

respectively. Images (a)-(f) involve a translation of 0,1, 2, 3, 4 or 5 pixels, respectively, 

in the frequency-encoding direction (vertical) between the reference and dynamic 

data sets.   In this case, the result is also a ringing artifact emanating from one 
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Figure 6.4: Motion Study (Rotation): (a)-(g) Dynamic image recon- 
structed with GS using 32 dynamic phase-encodings for rotations of 0, 
1, 2, 3, 6, 10 and 90 clockwise degrees, respectively, between the reference 
and dynamic data acquisitions. 

side. However, the nature of the ringing is slightly different from that seen with 

the motion in the phase-encoding direction. This is due to the fact that the GS 

model is applied along the (low-resolution) phase-encoding direction, and the Fourier 

transform is applied along the (high-resolution) frequency-encoding direction. As 

before, the artifacts are worse for increasing motion and a decreasing number of 

dynamic encodings. 

The last planar motion to be investigated was rotation. Figures 6.4(a)-(g) show 

the dynamic image reconstructed using 32 phase-encodings with the GS model for 

a rotation of 0, 1, 2, 3, 6, 10 and 90 clockwise degrees, respectively, between the 

reference and dynamic data sets. In this simulation, a slight blurring in the phase- 

encoding direction of the edges of internal structures results. The blurring increases 

with increasing rotation and a decreasing number of dynamic encodings. Because the 

outer boundary of the phantom is symmetric, no effect from the rotation is seen in 

the reconstruction of the outer boundary. 

To avoid these motion artifacts, it is necessary to detect and correct for motion 

that occurs between the acquisition of the reference and dynamic data sets prior to 

constrained reconstruction. The proposed method has performed well when applied 

to a sequence of dynamic images, as discussed earlier. The results of applying the 

proposed method to a contrast-enhanced dynamic study of a rat with cancer are shown 

in Fig. 6.5 in which (a) is the reference image that was reconstructed using 256 phase- 

encodings. Images (b)-(d) were reconstructed using the GS model with 32 dynamic 

encodings.  In image (b), there was no motion between the reference and dynamic 
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Figure 6.5: Motion Corrected Dynamic Images: (b)-(d) were recon- 
structed using the GS model with (a) as the reference image and 32 
dynamic encodings, (b) The dynamic image that results with no mo- 
tion between the reference and dynamic data sets. The remaining images 
show the dynamic image reconstructed with a 5 pixel shift in the phase- 
encoding direction (vertical), a -3 pixel shift in the frequency-encoding 
direction (horizontal) and a 3 degree clockwise rotation between the refer- 
ence and dynamic data sets, (c)-(d) The dynamic images that result with 
no motion correction and with the proposed method, respectively. Note 
the reduced motion artifacts in (d) as compared to (c). 
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data sets, and therefore, it represents the ideal GS reconstruction. The remaining 

images represent a case in which the position of the object during the dynamic data 

acquisition has changed from the reference position by a rotation of 3 degrees and 

shifts of 5 and -3 pixels in the phase-encoding and frequency-encoding directions, 

respectively. Figures 6.5(c)-(d) were reconstructed with no motion correction and 

with the proposed method, respectively. Note the reduced-motion artifacts in the 

corrected image (d). 

6.3    Summary 

The motion artifacts that are seen with the GS model include ringing and blur- 

ring due to in-plane translation and rotation, respectively, between the reference and 

dynamic data sets. To avoid these artifacts, the motion between the data sets needs 

to be measured, which is a difficult problem for many reduced-encoding dynamic 

imaging applications. The proposed solution uses a similarity norm to accurately 

detect the motion in spite of the contrast changes and the low-resolution nature of 

the dynamic data. 
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CHAPTER   7 

FUTURE WORK AND CONCLUSIONS 

7.1    Future Work 

• 3D RIGR/TRIGR: For many dynamic imaging applications, it would be de- 

sirable to do full 3D imaging, as opposed to a stack of 2D slices. An example 

is contrast-enhanced breast imaging, in which high-spatial resolution in 3 di- 

mensions would reduce the risk of a missed lesion. This would require that the 

RIGR/TRIGR algorithms be extended to 3D. In order to do this, it is neces- 

sary to solve a block-Toeplitz system to determine the GS coefficients. If it 

was desired to use explicit edge information or motion compensation, the edge 

extraction technique and motion measurement method would both need to be 

extended to 3D. It may be necessary to investigate faster algorithms to perform 

all of these functions for the 3D case due to the vast amount of data involved. 

• Locally Focused RIGR/TRIGR: Given the a priori knowledge that the dy- 

namic changes will occur in a certain region of the image, it may be possible 

incorporate this information with the GS model to obtain a better reconstruc- 

tion in that area of the dynamic image. This would have application in, for 

example, following the progress of a needle biopsy in interventional MRI. This 

work may involve the development of better methods of background suppression 

to allow the GS basis functions to only represent the dynamic changes in the 

region of interest. 

• Contrast-Immune Navigator Echoes: As discussed in Chapter 6, it may 

be possible to design pulse sequences for contrast-enhanced dynamic imaging 
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sequences such that the navigator signal is not affected by the changing contrast 

due to, for example, an injected contrast agent. 

• Adaptive Data Acquisition: If the a priori information that is available is 

a reference image, the use of this information to guide the data acquisition can 

result in serious image artifacts. However, it may be possible to use other types 

of a priori information to guide the data acquisition in a beneficial way. 

7.2    Conclusions 

The reduced-encoding dynamic MR imaging problem has been addressed with 

the objective of obtaining simultaneously high temporal and spatial resolutions. To 

avoid the loss of spatial resolution that occurs with reduced-encoding Fourier imag- 

ing, many methods make use of a priori information at some point in the process 

to reduce the number of encodings that are necessary for the dynamic images. This 

study reveals that if the available a priori information is a reference image, direct 

use of this information to "optimize" data acquisition using the existing wavelet 

transform or singular value decomposition schemes can undermine the capability to 

detect new image features. However, proper incorporation of the a priori information 

in the image reconstruction step can significantly reduce the resolution loss asso- 

ciated with reduced-encoding. For Fourier-encoded data, we have shown that the 

generalized-series (GS) model is an effective mathematical framework for carrying 

out the constrained reconstruction step. 

To further improve the reconstructed image, several techniques were developed 

to improve the GS basis functions. The two-reference reduced-encoding imaging by 

generalized-series reconstruction (TRIGR) method uses a second high-resolution ref- 

erence image to suppress the background information. This allows the GS basis 

functions to more accurately represent the areas of dynamic change. A second tech- 

nique uses explicit edge information from the reference image to inject information 

from the dynamic data into the GS basis functions. The resulting GS basis functions 

more closely resemble those that would be derived from the dynamic image itself. 
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Finally, motion that occurs between the acquisition of the reference data set and 

the dynamic data set can render the reference information useless as a constraint for 

image reconstruction. This is a difficult problem to address, because the dynamic 

changes may alter the appearance of the image significantly, posing problems for 

both navigator-based techniques and registration algorithms. A motion compensation 

method is proposed which uses a similarity norm to accurately detect the motion, in 

spite of the contrast changes and low-resolution nature of the dynamic data. The 

technique was shown to significantly reduce motion artifacts in GS images. 
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APPENDIX A 

SIGNAL-TO-NOISE RATIO 

If the MRI measurement noise is assumed to be additive noise from an ergodic, sta- 

tionary, white noise process with zero mean and standard deviation a^ the resulting 

data can be expressed as 

d{k) = d(k) + Vd(k), (A.l) 

where d(k) is the measured noisy data, d(k) is the noiseless data and %(&) is the 

measurement noise. This noise will be transformed to the image domain during 

image reconstruction, resulting in the noisy image 

i(r) = I(r) + r,j(r). (A.2) 

Clearly, the resulting noise image rjj{r) will depend upon the image reconstruction 

scheme used, as well as the number of encodings. 

With this in mind, the signal-to-noise ratio (SNR) behavior of the Fourier series 

and generalized-series (GS) methods was investigated using ID profiles. Both noise- 

less and noisy reconstructions of the dynamic image were created for various noise 

levels and various numbers of dynamic encodings. The SNR of the reference and 

dynamic data was the same, reflecting the common experimental implementation of 

the method. (If signal averaging was used to improve the SNR of the reference data, 

this would also affect the SNR of the resulting GS dynamic images.) The results ob- 

tained for the reduced-encoding Fourier series and generalized-series reconstructions 

were compared with that of the high-resolution dynamic image. 

Two measures of SNR were calculated. The first measure included both random 

noise and systematic artifacts, and the second measure included only the random 

67 



noise component. In the first case, the noiseless dynamic image (gold standard) was 

subtracted from, for example, the noisy GS image, yielding a profile that included 

both noise and systematic artifacts. In the second case, the noiseless GS image was 

subtracted from the noisy GS image, leaving a pure noise profile. For each data 

point, the average standard deviation (SD) of the resulting profile for 1000 trials with 

different noise realizations was calculated to quantify the performance. 

Figure A.l shows one realization of the 1000 trials conducted with 32 dynamic 

encodings. Rows 1 and 2 show the noiseless and noisy, respectively, reconstructions 

of the reference ((a),(e)) and dynamic ((b),(f)) profiles reconstructed using 512 en- 

codings and the Fourier series ((c),(g)) and GS ((d),(h)) profiles reconstructed using 

32 dynamic encodings. Row 3 shows the difference between the noisy reconstruc- 

tions (f)-(h) and the noiseless dynamic image (b). As discussed before, this gives a 

measure of the noise and systematic artifacts that are present in the noisy reconstruc- 

tions. Row 4 shows the difference between the noisy reconstructions (f)-(h) and the 

corresponding noiseless reconstructions (b)-(d). Comparison of rows 3 and 4 shows 

that significant systematic artifacts are present in the Fourier series and GS profiles 

reconstructed with 32 dynamic encodings in this simulation. Note the reduced noise 

level in the truncated Fourier reconstruction (m) due to the reduced number of data 

points that are used in the reconstruction. 

Figure A.2 shows the mean SD of the noise alone for the Fourier series and GS 

reconstructions as the number of dynamic encodings ranges from 8 to 256 of 512 

encodings. As expected, the Fourier series reconstructions have a lower mean SD at 

every number of dynamic encodings than the high-resolution dynamic reconstruction 

due to the reduced number of data points used. The mean SD for the GS model is 

consistently higher than that of the high-resolution dynamic reconstruction. For this 

simulation, the mean SD of the GS reconstruction improves only slightly as a greater 

number of dynamic encodings is used past 32 encodings. 

Figure A.3 depicts the behavior of the mean SD of the noise and systematic 

artifacts for the Fourier series and GS reconstructions with a varying number of dy- 

namic encodings ranging from 8 to 256 of 512 encodings.   The mean SD for the 
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Figure A.l: SNR Study: Rows 1 and 2 are the noiseless and noisy recon- 
structions, respectively, of the reference ((a),(e)) and dynamic ((b),(f)) 
profiles reconstructed with 512 encodings and the truncated Fourier 
((c),(g)) and GS ((d),(h)) profiles reconstructed using 32 dynamic en- 
codings. Row 3 shows the difference between the noisy reconstructions 
(f)-(h) and the noiseless dynamic profile (b). This gives a measure of the 
noise and systematic artifacts that are in the noisy reconstructions. Row 
4 shows the difference between the noisy reconstructions (f)-(h) and the 
corresponding noiseless reconstructions (b)-(d). This gives a measure of 
the noise performance. Note that the four rows are not on the same scale. 
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high-resolution dynamic image is included as a horizontal line for comparison pur- 

poses. As would be expected, the combination of noise and systematic artifacts 

increases as the number of dynamic encodings decreases for both the Fourier series 

and the generalized series. The GS reconstructions have a smaller mean SD than the 

Fourier series reconstructions at all numbers of dynamic encodings due to the reduced 

systematic artifacts, as can be determined using both Figs. A.2 and A.3. 

In summary, the noise behavior of the reduced-encoding Fourier series is better 

than that of the generalized-series. However, if both random noise and systematic 

artifacts are considered, the truncated Fourier series no longer performs better than 

the generalized-series. Because the quality of the resulting dynamic image is affected 

by both random noise and systematic artifacts, the generalized-series would be the 

better choice for reduced-encoding dynamic image reconstruction. 
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